Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
IF(false, x, y, z, u) → LE(y, s(u))
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
MODITER(x, s(y), z, u) → LE(x, z)
MOD(x, s(y)) → MODITER(x, s(y), 0, 0)
LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
IF(false, x, y, z, u) → LE(y, s(u))
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
MODITER(x, s(y), z, u) → LE(x, z)
MOD(x, s(y)) → MODITER(x, s(y), 0, 0)
LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 5/4 + (15/4)x_1   
POL(LE(x1, x2)) = x_1 + (13/4)x_2   
The value of delta used in the strict ordering is 85/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.